Deep Learning for Computer Vision 2. Go deeper 2017

Deep Learning for Computer Vision 2. Go deeper 2017

Course Description

The course aims to present basics knowledge of modern approaches which are used for solving computer vision problems: from descriptions of solutions based on deep convolution networks with hacks and practical examples.

Course topics

Theory part (lectures):

  • Lecture I: Advanced overview of topologies. Structure, accuracy, size, inference time.
  • Lecture II : Tips and tricks for finetunning neural networks. Light weight neural networks.
  • Lecture III : Light weight neural networks (part 2). Ways to reduce model’s size/speed saving accuracy level.


Course tools

Python, NN framework: pytorch


Basic linear algebra, proficiency in Python, machine learning basics (understanding of different types of learning (supervised, unsupervised, reinforcement learning), classification, regression problems, generalization error, overfitting, train/test datasets split). Optional, but desirable: neural network (NN) basics, feed forward NN, different activation functions, backpropagation.


Veronika Yurchuk
Machine Learning Researcher at Ring Labs Kyiv

I am a Deep Learning Researcher at Ring Labs Kyiv with a focus on Computer Vision. I have worked on solving object detection and object classification problems using CNNs. Before I worked as Machine Learning Researcher and I have interesting experience applying machine learning algorithms to solve different customers’ problems.

I have attended Lviv Data Science Summer School 2016 and Lviv Machine Learning Winter School and got the best project award in Computer Vision course.
Hope you will enjoy my course, get important knowledge and extend your background that will help you to become a professional.

Field of interests: Deep Learning, Computer Vision and Machine Learning

Про факультет

Важлива інформація

Контактна інформація